Funções trigonométricas inversas

Como sabemos, uma função possui inversa apenas se ela for bijetora, mas isso não ocorre com nenhuma das funções trigonométricas estudadas. Por este motivo, para que a inversa de uma função trigonométrica exista devemos restringir seu domínio (e eventualmente seu contradomínio) a um subconjunto menor de modo que nesta restrição a função seja bijetora.

Por exemplo, a função seno não é bijetora se considerarmos o domínio como $\mathbb{R}$, mas se restringirmos o domínio apenas ao intervalo $\left[{\footnotesize -} \frac{\pi}{2},\frac{\pi}{2}\right]$ (ou a qualquer intervalo da forma ${ \footnotesize \left[{\footnotesize -} \frac{\pi}{2}+k \pi,\frac{\pi}{2}+ k \pi\right] }$), aí sim ela é bijetora.

Para ver isso, lembre que para uma função ser injetora se e somente se seu gráfico satisfaz a seguinte propriedade:

Toda reta horizontal que corta o eixo $Oy$ num valor da imagem também corta o gráfico da função em, no máximo, um ponto.

Untitled

Considerando a restrição acima a função seno possui uma inversa que chamamos de arcosseno e seu valor em $x\in [-1,1]$ é denotado por ${\rm arcsen}(x)$ ou ${\rm sen^{-1}}(x)$.

Assim como a função seno, as demais funções trigonométricas também são periódicas e para cada uma delas existem vários intervalos onde a restrição se torna bijetora e portanto possui uma inversa.

Na tabela abaixo apresentamos para as demais funções trigonométricas as restrições que consideramos serem as mais usuais.

<aside> <img src="/icons/cd_lightgray.svg" alt="/icons/cd_lightgray.svg" width="40px" /> A primeira coluna da tabela indica o domínio (restringido) e a imagem da função trigonométrica considerada e as demais colunas referem-se a respectiva função inversa.

Função Restringida Nome da Inversa Símbolo Domínio e Imagem
$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \stackrel{\rm sen}{\to} [-1,1]$ Arcosseno $\rm arcsen $ ou $\rm sen^{-1} $ $[-1,1]\stackrel{ \rm sen^{-1} }{\to} \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] $
$\left[0, \pi\right] \stackrel{\cos}{\to} [-1,1]$ Arcocosseno $\arccos $ ou $\cos^{-1}$ $[-1,1]\stackrel{\cos^{-1} }{\to}\left[0, \pi\right] $
$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\stackrel{\tan}{\to} \mathbb{R}$ Arcotangente $\arctan $ ou $\tan^{-1}$ $\mathbb{R}\stackrel{\tan^{-1} }{\to} \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$\left(0, \pi\right) \stackrel{\rm cotan}{\to} \mathbb{R}$ Arcocotangente $\rm arccot $ ou $\rm cotan^{-1}$ $\mathbb{R}\stackrel{\rm cotan^{-1} }{\to} \left(0, \pi\right)$
$\left[0, \frac{\pi}{2}\right) \stackrel{\sec}{\to} [1,+\infty)$ Arcosecante $\rm arcsec $ ou $\sec^{-1}$ $[1,+\infty)\stackrel{\sec^{-1} }{\to} \left[0, \frac{\pi}{2}\right) $
$(0, \frac{\pi}{2}] \stackrel{\cosec}{\to} [1,+\infty)$ Arcocossecante $\rm arccosec$ ou $\cosec^{-1}$ $[1,+\infty)\stackrel{\cosec^{-1} }{\to} (0, \frac{\pi}{2}] $
</aside>

https://www.geogebra.org/m/cvmbghss

Fórmulas e Identidades trigonométricas

Identidade fundamental

$$ {\rm sen }^2\: \alpha + \cos^2 \alpha = 1 \\ $$

Como consequência da identidade fundamental temos

$$ \sec^2 \alpha -\tan^2 \alpha = 1 \\ \cosec^2 \alpha -{\rm cotan}^2\:\alpha = 1 \\ $$

Funções trigonométricas de ângulos soma e diferença